An Intro To Activated Carbon |
Date Added: February 27, 2008 07:35:56 PM |
Author: |
Category: Water Filtration Technology |
An Intro to Activated Carbon Activated carbon is a valuable weapon in the arsenal of water treatment technologies. It is widely used to remove contaminants from water. Activated carbon is an amazing substance which justifies a brief explanation. What is it? Adsorption Water contaminants that are effectively adsorbed generally have lower water solubility, are organic (made up of carbon atoms), have a higher molecular weight and are chemically neutral. Besides physical adsorption, chemical reactions can occur on a carbon surface. For instance, chlorine can be removed from water by using carbon as a catalyst. The activated carbon provides electron transfer surface sites where chlorine accepts an electron from the dissolved oxygen in water which reduces chlorine to harmless chloride atoms. The carbon eventually becomes exhausted when these electron transfer sites are no longer available. At this point the chlorine will remain in the water until the water filters are replaced. Carbon Characteristics which Effect Performance Generally, lower flow rates result in greater contact time which allows the organic contaminants to travel deeper into the carbons interstices thus exposing the organic to more pore surfaces which increases adsorption. When contact time is limited consider a carbon with a smaller particle size which will increase the rate of removal as the contaminant has less distance to reach the pores in the center of the carbon particle. This partially explains why carbon block technology is gaining widespread use. The carbon particle is crushed to a power, mixed with binders and processed to an extruded carbon block. These particles are very small which increases the speed of adsorption versus granulated carbon. As carbon block water filter cartridge technology advances the performance and capabilities become more impressive. Granulated carbon will continue to be in high demand. One reason for this is that a granulated activated carbon bed can withstand the rigors of backwashing which agitates and lifts the carbon bed. This feature is desirous as it allows the bed to be cleaned of dirt and sediment by occasionally reversing the water flow. When carbon is employed in this manner obtain a product with a high abrasion number. This defines the carbons ability to withstand degradation when backwashing. It is imperative to know that the contaminant size must be smaller than the pore size offered by the carbon employed. For example, carbons with small pore size will be ineffective at removing tannin organics which have a relatively large molecular structure. Although there is a greater adsorption rate with small pore diameter carbons it is many times essential to use carbons that have both fine and wide pore diameters. These are well suited to effectively treat waters with versatile organic contents. Activated carbon is a media which has impressive applications in the water treatment industry. Its virtues are so great that it seems to purify almost by magic. Hopefully this brief introduction to activated carbon has provided some fundamental insight into something seemingly mystical. John Crean |
|